Главная страница
Навигация по странице:

  • Выберите все способы, которыми можно изменить оптическую разность хода в интерферометре Майкельсона

  • Выберите вариант формы интерференционных полос в опыте Юнга с узкими щелями

  • Почему картину интерференционных колец Ньютона предпочитают наблюдать в отраженном, а не проходящем свете

  • интерференция. Интерференция


    Скачать 49.31 Kb.
    НазваниеИнтерференция
    Анкоринтерференция.docx
    Дата22.04.2017
    Размер49.31 Kb.
    Формат файлаdocx
    Имя файлаинтерференция.docx
    ТипДокументы
    #2457
    страница1 из 2
      1   2


    ИНТЕРФЕРЕНЦИЯ

    На экране Р наблюдается интерференционная картина от источников S1и S2.Что называется шириной интерференционной полосы? Расстояние между:

    Cоседними максимумами или минимумами интенсивности.

    На экране Р наблюдается картина интерференции от двух точечных когерентных источников с длиной волны 500 нм. В точке А фаза колебаний от источника S1 -235 Пи, от S2- 229 Пи. Определите разность фаз колебаний Ф и порядок интерференции k.

    k = 3; Ф = 6 Пи
    Изображение точечного монохроматического источника S строится линзой L в точке А. Линзу разрезали пополам и сместили одну половину вдоль SA. Опишите распределение интенсивности в плоскостях, перпендикулярных SA, между точками А и В.

    Темные и светлые полуокружности с центром на SA.
    В опыте Юнга наблюдается картина в красном свете на экране Р, расположенном от источников S1и S2 на расстоянии 1 м. Для того, чтобы получить картину с тем же периодом в синем свете необходимо отодвинуть экран на 60 см. Найдите отношение длин волн красного и синего света.

    answer1=1.6 % 5
    Луч света от источника S попадает в интерферометр Майкельсона, делится светоделителем R1на две части, которые затем сходятся на экране Р. Возникающая при этом разность хода между интерферирующими лучами равна:

    2*(OM1- OM2)
    Кольца Ньютона наблюдаются в отраженном свете с использованием двух различных объектов А и В, помещенных на плоскопараллельной пластине. Выберите правильный вариант исполнения этих объектов и наличия оптического контакта.

    А - сферическая линза; В - конус. Контакт - справа.
    Что произойдет с картиной колец Ньютона, наблюдаемой в отраженном монохроматическом свете, если в системе линза-пластина заменить пластину на вторую плосковыпуклую линзу ?

    Картина сожмется, центр останется темным.
    Для устранения отраженных бликов от поверхности стекла применяют специальное интерференционное покрытие. Рассчитайте параметры такого просветляющего покрытия (n1 и d) для нормального падения зеленого света с длиной волны 520 нм на стеклянную поверхность с n2 = 1,69.

    n1= 1.30; d = 0.10 мкм
    В точке А на экране Р наблюдается интерференция от двух точечных источников S1и S2. Что называется порядком интерференционной полосы?

    Число длин волн, укладывающихся в оптической разности хода.
    Экран освещается двумя монохроматическими источниками: S1и S2 с длинами волн 450 нм и 600 нм соответственно. Геометрическая длина пути S1A = 600,006 мм, а S2A = 600,003 мм. Определите оптическую разность хода (Delta) лучей в точке A и результат интерференции.

    Delta = 3 мкм; интерференция не наблюдается.
    Амплитуда сигнала от радиомаяка модулируется в приемнике удаляющегося корабля из-за интерференции по схеме Ллойда. Как изменяется при этом оптическая разность хода? Вода в радиодиапазоне является проводником.

    Монотонно уменьшается.
    В установке Ллойда на экране P наблюдается интерференционная картина. Во сколько раз оптическая разность хода (Delta) в точке N больше длины волны излучения и каков результат интерференции в ней, если S1M = MN = 250,015 мм, S1N = 500,000 мм, длина волны света 600 нм.

    В 50,5 раз; минимум.
    Воздушный клин, образованный между двумя плоскопараллельными пластинами, освещается плоской монохроматической волной. Определите правильный вариант картины интерференционных полос в прошедшем свете. (Если, на Ваш взгляд, правильного нет - введите ноль.)

    0
    При освещении тонкой пленки точечным источником S на экране в отраженном свете наблюдаются полосы равного наклона. Определите окраску отраженного света в точках А, В и С, если на всем экране наблюдают полосы одного порядка.

    А - красная, В - зеленая, С - фиолетовая.
    Картина интерференционных колец Ньютона наблюдается в проходящем свете. Показатели преломления линзы и пластины - n1 и n2. Что произойдет, если зазор между линзой и пластиной заполнить жидкостью с показателем преломления n3 при условии: n1> n3> n2?

    Картина сожмется; в центре появится минимум.
    Картина интерференционных колец Ньютона наблюдается в отраженном свете через два светофильтра - красный и фиолетовый. Определите отношение длин волн пропускания красного и фиолетового светофильтров.

    1,67
    Во сколько раз расстояние от щелей до экрана в опыте Юнга должно быть больше расстояния между щелями, для того, чтобы период интерференционной картины превосходил длину волны света в 1000 раз ?

    1000
    Два параллельных монохроматических луча падают нормально на стеклянную призму (n =1,5) и после преломления выходят из нее. Определите (в миллиметрах) оптическую разность хода лучей к моменту времени, когда они достигнут плоскости АВ. Угол Alpha = 30°, a = 2 см.

    0
    На экране P наблюдается картина интерференции в схеме бипризмы Френеля. Показатель преломления вещества бипризмы n1, преломляющий угол ? Как изменится картина интерференции, если бипризму поместить в воду (см. рис., n2< n1)?

    Ширина интерференционной полосы увеличится.
    Из линзы L, в переднем фокусе которой находится точечный источник S, вырезана центральная часть шириной h = 0,6 мм. Обе половины сдвинуты до соприкосновения. Найдите (в миллиметрах) ширину интерференционных полос на экране Р, если длина волны 600 нм, а фокусное расстояние f = 50 см.

    0,5
    Наблюдается система интерференционных полос равной толщины в воздушном клине. Выберите все правильные варианты формы клина, соответствующие изображенной интерференционной картине.

    1 и 5

    Выберите все способы, которыми можно изменить оптическую разность хода в интерферометре Майкельсона?

    Вращением зеркала М1.

    Перемещением зеркала M2.
    На стеклянную поверхность (n2 = 1,64) необходимо нанести просветляющее покрытие. Зная, что коэффициент отражения зависит только от относительного показателя преломления и угла падения, выберите показатель преломления для вещества пленки.

    1,28
    Пленку толщиной менее 0,15 мкм освещают точечным источником белого света. В отраженном свете в точке А она имеет желтую окраску. Как будет изменяться окраска пленки, если источник света приближать к ее поверхности из положения 1 в положение 2?

    Будет смещаться к синему краю спектра.
    Выберите верное условие, соответствующеее расположению точечного источника и двух его мнимых изображений в интерференционной схеме зеркал Френеля.

    Они находятся на дуге окружности с центром в точке О.
    В установке Ллойда на экране P наблюдается интерференционная картина. S1- точечный источник света, S2- его мнимое изображение в плоском зеркале. Как изменится картина интерференции на экране P если S1 отодвинуть от плоскости зеркала на малое расстояние h?
    Уменьшится ширина интерференционной полосы.
    В опыте Юнга на пути луча d2 поставлена тонкая стеклянная пластинка, вследствие чего центральная полоса сместилась в положение, первоначально занятое пятой светлой полосой. Длина волны излучения 600 нм, показатель преломления пластинки n =1,5. Какова в микрометрах толщина пластинки?

    6,0
    Высота радиомаяка над уровнем моря H=150 м. Высота мачты (принимающей сигналы маяка) приближающегося корабля h= 12,5 м, длина волны излучения 1,1 м. Определить на какой дальности будет зарегистрирован первый максимум сигнала.Поверхность воды в этом случае можно рассматривать как поверхность проводника.

    6818
    Выберите правильное выражение для оптической разности хода (Delta) лучей, отраженных от стеклянной плоскопараллельной пластинки. Падающий свет имеет плоский волновой фронт и длину волны Lambda.

    Delta) = 2dn cos (beta) + (Lambda) /2
    В интерферометре Майкельсона одно из непрозрачных зеркал M2 передвинули на расстояние deltaХ равное десяти длинам волн. На сколько полос сместится картина интерференции на экране Р ?

    20
    На экране в точке А наблюдается интерференционное кольцо N-го порядка от точечного монохроматического источника, освещающего плоскопараллельную стеклянную пластину. Как будет меняться номер кольца в этой точке в двух случаях: а) увеличении d; b) уменьшении n ?

    а) будет увеличиваться; b) будет уменьшаться.
    Кольца Ньютона наблюдаются в отраженном монохроматическом свете в системе с воздушным зазором. Выберите правильный вариант отношения квадратов радиусов светлых колец R1, R2 и R3.

    1 : 3 : 5

    Выберите вариант формы интерференционных полос в опыте Юнга с узкими щелями ?

    2
    Источник S (длина волны 400 нм) создает в схеме Юнга два когерентных источника, помещенных в бензол (n=1,5). В точку А на экране луч от S1 дошел за t1 = 2,0000Е(-10)c, а от S2- за t2 = 2,0002Е(-10)c. Определите разность фаз колебаний Ф в точке А и порядок интерференции k.

    Ф = 30 Пи; k = 15
    Как изменяется расстояние между изображениями S1S2 и ширина интерференционной полосы d на экране, если увеличивать угол Alpha в схеме зеркал Френеля?

    S1S2 увеличивается; d уменьшаетс
    Высота радиомаяка над уровнем моря H = 200 м, расстояние до корабля d = 5,5 км. Определите оптимальную высоту мачты корабля для приема сигналов с длиной волны 1,5 м. Поверхность воды в этом случае можно рассматривать как поверхность проводника.

    10,3

    Почему картину интерференционных колец Ньютона предпочитают наблюдать в отраженном, а не проходящем свете ?

    Контрастность колец в отраженном свете выше.
    Изображена картина интерференционных полос равной толщины в отраженном свете, полученная при освещении стеклянного клина излучением двух длин волн. Определите форму клина и расположение ребра.

    Угол клина постоянен, ребро слева.
    При отражении от тонкой водяной пленки под углом Alpha белый свет приобрел красноватый оттенок. Что будет происходить с цветом пленки при: а) ее испарении и b) увеличении угла падения ?

    Пленка начнет желтеть в обоих случаях.
    Между двумя поверхностями образован тонкий клин, заполненный водой (n=1,34) и освещенный монохроматическим излучением с длиной волны 670 нм. Определите в нанометрах разность толщин клина в точках А и В.

    500
    Чему равна оптическая разность хода (Delta) в точке А, если d1, d2 - геометрические длины путей, пройденные лучами от соответствующих точечных источников в средах с показателями преломления n1 и n2?

    Delta) = d1*n1– d2*n2
    Два когерентных источника с длиной волны (Lambda) 600 нм помещены в две среды - сероуглерод (n1 = 1,665), и бромоформ (n2 = 1,6665). В точку А на экране луч от S1 дошел за t1 = 1,110Е(-10) с, а от S2 за t2 = 1,111Е(-10) с. Какова разность хода (Delta) и порядок (k) интерференции в точке А.

    Delta = 50 Lambda; k = 50
    На экране Р наблюдается интерференционная картина от двух точечных когерентных источников S1 и S2. На сколько микрометров изменится разность хода в точке О, если на пути луча от S1 поместить мыльную пленку толщиной 1 мкм ? Длина волны излучения 660 нм, показатель преломления воды n = 4/3.

    0,33
    В опыте с бизеркалами Френеля расстояние между мнимыми источниками равно 1 мм; расстояние от источников до экрана P - 1 м. Длина волны 550 нм. Определить (в миллиметрах) расстояние OA от центрального пятна на экране до четвертого минимума.

    1,925
    Выберите все лучи, интерференция которых образует картину колец Ньютона в отраженном свете.

    2 и 3
    Что произойдет с центральным пятном в картине колец Ньютона, если пространство между линзой и пластиной заполнить сероуглеродом (n = 1,67) вместо воздуха. (Картина рассматривается в проходящем свете).

    Центральное пятно сожмется и останется светлым.
    На плоскопараллельную пластину положили бипризму с тупым углом, близким к 180 град. Ребро бипризма параллельно линии а - а. Введите номер правильного варианта формы интерференционных полос равной толщины, образующихся в проходящем свете.

    2
    Мыльная пленка стекает вниз, постепенно утоньшаясь. Определите в нанометрах толщину пленки в точке А, где наблюдается в отраженном монохроматическом свете с длиной волны 520 нм последняя светлая полоса. Показатель преломления пленки 1,30.

    100
    На экране Р наблюдается стабильная интерференционная картина от 2-х когерентных источников (S1, S2) с длиной волны 600 нм. Kак изменится оптическая разность хода в точке М, если бы длина волны источников была равна 400 нм ?

    Не изменится.
    На экране P наблюдается картина интерференции в схеме бипризмы Френеля. Показатель преломления вещества бипризмы n, преломляющий угол Alpha. Как изменится картина интерференции, если незначительно уменьшить угол Alpha?

    Увеличится ширина интерференционной полосы.
    В опыте Юнга отверстия освещались светом с длиной волны 600 нм, расстояние между отверстиями 1мм и расстояние от отверстий до экрана 3 м. Определите (в миллиметрах) расстояние ОА (расстояние на экране от точки центрального максимума до точки второго минимума интерференции).

    2,7
    Изображение точечного монохроматического источника S строится линзой L (фокусное расстояние f) в точке А. Линзу разрезали пополам и раздвинули на расстояние h. Каким должно быть расстояние d чтобы наблюдать картину интерференции?

    d > f
    Луч света от источника S попадает в интерферометр Майкельсона, делится светоделителем R1на две части, которые затем сходятся на экране Р. Возникающая при этом разность хода между интерферирующими лучами равна:

    2*(OM1- OM2)
    В точке А измеряют интенсивность монохроматического излучения, отраженного от плоскопараллельной пластины. Определите изменение величины сигнала в точке А при постепенном уменьшении толщины d. Угол падения (альфа) постоянен и равен 45°.

    Интенсивность периодически меняется.
    Полосы равной толщины наблюдают при отражении излучения двух длин волн от стеклянного клина. Определите зависимость угла клина от координаты Х и расположение ребра клина.

    Угол клина постоянен. Ребро справа.
    Интерференционные полосы наблюдаются в воздушном клине, образованном двумя стеклянными пластинами и зажатой между ними проволокой. Найдите в миллиметрах толщину проволоки, если длина волны 550 нм, h = 3 см, а шаг интерференционной картины равен 0,05 мм.

    0.165
    В каком случае интерференционная картина в плоскости экрана Р будет наиболее контрастной? ( А1 и А2- амплитуды интерферирующих волн в точке М от точечных источников S1 и S2 соответственно.)

    А1= А2
    На экране P наблюдается картина интерференции в схеме бипризмы Френеля. Показатель преломления вещества бипризмы n, преломляющий угол? Как изменится картина интерференции, если взять такую же призму но с n' > n.

    Ширина интерференционной полосы уменьшится.
    В схеме Юнга на экране наблюдается картина интерференции (длина волны 450 нм). Геометрические длины путей до точки А - S2F =700,003мм; S1A =700,006мм. Определить разность фаз колебаний (Ф) в точке А и порядок интерференции k. Система находится в бензоле (n = 1,5).

    Ф = 20 Пи; k =10
    Из линзы L, в переднем фокусе которой находится точечный источник S, вырезана центральная часть шириной h. Обе половины сдвинуты до соприкосновения. Как изменится ширина интерференционных полос на экране Р при его перемещении из положения Р1в Р2?

    Ширина полос не изменится.
    Как изменится картина интерференционных колец Ньютона, если зазор между линзой и пластиной заполнен жидкостью с показателем преломления большим, чем показатель преломления стекла ?

    Картина сожмется к центру.
    Смещение интерференционной картины на экране Р за счет подвижки зеркала М2 в интерферометре Майкельсона составило две полосы. Чему равно отношение расстояния Delta Х к длине волны излучения ?

    1,0
    Кольца Ньютона наблюдаются в проходящем свете в системе: плосковыпуклая линза (n1 = 1,73) вложена в плосковогнутую (n2 = 1,63), между ними залит сероуглерод (n3 = 1,67) . Введите номер правильного условия возникновения светлых колец, записанного так, чтобы левая часть равенства представляла собой оптическую разность хода интерферирующих лучей.

    5
    Между двумя поверхностями образован тонкий клин, заполненный водой (n =1,34) и освещенный монохроматическим излучением с длиной волны 670 нм. Определите в нанометрах разность толщин клина в точках А и В.

    500
    На экране Р наблюдается интерференция от двух когерентных источников S1 и S2. Определите во сколько раз оптическая разность хода в точке А больше длины волны излучения источников S1 и S2. В точке О расположен центр интерференционной картины.

    1,5
    В схеме Юнга на пути луча d2 поставили стеклянную пластинку так, что оптическая длина пути этого луча увеличилась на 20 длин волн. Что произошло с картиной интерференции на экране и какова оптическая разность хода (Delta) в точке М? (ОМ = 10 мм; S1S2 = 3000 lambda; d = 1,5 м.)

    Delta) = 0; картина интерференции сместится вниз
    В интерференционной установке бизеркал Френеля расстояние между изображениями источника света S1S2 = 0,5 мм, расстояние до экрана P - 5 м. В зеленом свете получились полосы на расстоянии 5 мм друг от друга. Определите (в нанометрах) длину волны зеленого света.

    500
    Билинза Бийе, образованная путем удаления центральной полосы линзы и совмещения оставшихся половинок, создает интерференционную картину в области перекрытия пучков. Как изменяется число полос N и ширина полосы d при смещении экрана из положения Р1 в Р2?

    d не изменяется; N сначала возрастает, а затем уменьшается.
    Наблюдается система интерференционных полос равной толщины в воздушном клине. Выберите все правильные варианты формы клина, соответствующие изображенной интерференционной картине.

    1 и 5
    Кольца Ньютона наблюдаются в отраженном свете с использованием двух различных объектов А и В, помещенных на плоскопараллельной пластине. Выберите правильный вариант исполнения этих объектов и наличия оптического контакта.

    А - сферическая линза; В - конус. Контакт - справа.
    На стеклянную поверхность (n2 = 1,64) необходимо нанести просветляющее покрытие. Зная, что коэффициент отражения зависит только от относительного показателя преломления и угла падения, выберите показатель преломления для вещества пленки.

    1,28
    В отраженном монохроматическом свете наблюдаются полосы равной толщины в зазоре сложной формы между двумя стеклами. Определите соотношение между толщинами зазора в точках А и В, если при уменьшении длины волны света полосы начинают "стягиваться" в точку А.

    Толщина зазора в точке В больше.
    На экране Р наблюдается интерференция излучения длиной волны (lamda); от двух когерентных источников S1 и S2. Определите (в градусах) разность фаз интерферирующих лучей в точке А. В точке О расположен центр интерференционной картины.

    540
    В установке Ллойда на экране Р наблюдается интерференционная картина. S1 - точечный источник света с длиной волны 600 нм. Как изменится картина интерференции на экране Р, если источник S1 незначительно придвинуть к экрану Р?

    Ширина интерференционной полосы увеличитс
    На экране Р наблюдается интерференционная картина от двух точечных когерентных источников S1 и S2. На сколько изменится разность фаз колебаний в точке О, если на пути луча от S1 поместить мыльную пленку толщиной 1 мкм ? Длина волны излучения 660 нм, показатель преломления воды n=4/3.

    На Пи
    Радиотелескоп распроложен на берегу моря на высоте h = 110 м. Радиоизлучение Солнца, отражаясь от воды, интерферирует по схеме Ллойда. Определить выражение для оптической разности хода в момент, когда угловая высота Солнца над горизонтом равна (alpha).

    2 h sin (alpha) + (lambda)/2
    Воздушный клин, образованный между двумя плоскопараллельными пластинами, освещается плоской монохроматической волной. Определите правильный вариант картины интерференционных полос в прошедшем свете. (Если, на Ваш взгляд, правильного нет - введите ноль.)

    0
    При освещении тонкой пленки точечным источником S на экране в отраженном свете наблюдаются полосы равного наклона. Определите окраску отраженного света в точках А, В и С, если на всем экране наблюдают полосы одного порядка.

    А - красная, В - зеленая, С - фиолетовая.
    Исследуется картина интерференции в отраженном свете от точечного монохроматического источника. В точках А и В наблюдаются минимумы k1 и k2 порядков соответственно. Определите форму полос и соотношение между k1 и k2.

    Кольца с центром в точке О. k1> k2.
    На поверхности стали при закалке возникла окисная пленка синего цвета (длина волны 416 нм, n = 1,6). Выберите все возможные значения толщины пленки, если известно, что наблюдается интерференция не более чем второго порядка, а фаза волны при отражении от металла меняется на 180°.

    0.130 мкм

    0.260 мкм

    ДИФРАКЦИЯ

    Экран с отверстием освещается точечным монохроматическим источником. На втором экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите возможные варианты наблюдаемой картины, если известно что оказалось открытым нечетное число френелевских зон.

    1 и 3
    Монохроматическая волна интенсивностью J0 падает на круглое отверстие диаметра d, открывающего для точки наблюдения Р одну зону Френеля. Определите, во сколько раз интенсивность в точке Р больше, чем J0 ? (амплитуде в точке Р соответствует один из векторов, показанных на фазовой диаграмме).

    4.0
    Свет от точечного источника S дифрагирует на круглом отверстии. Амплитуде в точке наблюдения соответствует на векторной диаграмме вектор АВ. Экран с отверстием заменяют диском того же диаметра. Выберите новый вектор, соответствующий амплитуде в точке Р.

    BO
    На экране наблюдается дифракция Френеля на круглом отверстии от точечного монохроматического источника S. Введите число открытых френелевских зон по заданному распределению интенсивности в плоскости экрана вдоль оси х.

    2
    Свет от точечного монохроматического источника S дифрагирует на круглом отверстии. Амплитуде в точке наблюдения соответствует на векторной диаграмме вектор АВ. Во сколько раз нужно увеличить диаметр отверстия, чтобы этой же точке соответствовал вектор АС ?

    1,73
    Плоский волновой фронт падает на экран с отверстием радиусом R, закрытым стеклянной пластиной (показатель преломления n). Величина R соответствует для точки Р первой зоне Френеля. Найдите минимальную глубину выемки радиуса r = R /корень квадратный из 2-х, увеличивающую интенсивность в точке Р вдвое.

    h = lambda /12 (n -1)
    I(x) - распределение интенсивности дифрагированного на узкой щели излучения, где x - координата в плоскости экрана, перпендикулярная длинной стороне щели. Найдите расстояние от щели до экрана, если lambda = 570 нм, а= 13.2 мм, ширина щели -0.06 мм.

    Правильного ответа нет
    Чему равна постоянная дифракционной решетки (в мкм), если эта решетка может разрешить в первом порядке линии спектра калия 4044 А и 4047 А ? Ширина решетки 3 см.

    22
    Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите правильный вариант, если известно что оказались открытыми четыре френелевских зоны.

    2 и 4
    Амплитуде дифрагированной волны на экране в точке наблюдения соответствует вектор АВ, показанный на фазовой диаграмме. Как изменится интенсивность в точке наблюдения, если диаметр отверстия увеличивают, добиваясь для той же точки амплитуды АС ?

    Вообще не изменится.
    Свет от источника S дифрагирует на круглом отверстии. Выберите на фазовой диаграмме вектора, соответствующие амплитудам в точке наблюдения, если: 1) отверстие открывает почти 7 первых зон; 2) вместо экрана с отверстием - диск того же диаметра; 3) экрана нет вообще.

    answer1=Вектора на диаграмме не соответствуют условию

    1. АВ, 2. ВС, 3. АС
    На экране Р наблюдается дифракция Френеля на круглом отверстии D от точечного монохроматического источника S. Введите число открытых френелевских зон по заданному распределению интенсивности в плоскости экрана вдоль оси х.

    4
    Точечный источник света S (длина волны 0,5мкм) расположен на расстоянии а = 100 см перед экраном с круглым отверстием диаметром 1,0 мм. Найти расстояние b (в метрах) до точки наблюдения Р, для которой амплитуда волны изображается вектором АВ на векторной диаграмме.

    2,0
    Плоский волновой фронт интенсивности J0 падает на экран с отверстием, закрытым стеклянной пластиной. Для точки Р на экране пластиной открыты 1,5 зоны Френеля. В пластине сделаны две круглые выемки: первая - внутренняя, глубиной h1 и радиусом R1/корень из2, вторая в виде кольца глубиной h2 и шириной (R1-R1/корень из2). Величины h соответствуют максимальной интенсивности в точке Р на экране. Найти эту интенсивность.

    8 J0 и 18 J0
    На щель ширины d=3,0 мкм нормально падает плоская световая волна ( с длиной волны = 0,5 мкм). Определить количество максимумов (N) интенсивности, наблюдаемых в фокальной плоскости линзы. Диаметр линзы считать бесконечным.

    11
    Постоянная дифракционной решетки шириной 2,5см равна 2мкм. Какую разность длин волн (в ангстремах) может разрешить эта решетка в области длин волн 600нм в спектре второго порядка?

    0,24
    Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Введите номер правильного варианта наблюдаемой картины, если известно что оказались открытыми пять френелевских зон.

    1
    Плоская монохроматическая волна с интенсивностью J0 падает по нормали на круглое отверстие диаметром d. Определите, во сколько раз интенсивность волны в точке наблюдения больше, чем J0, если ее амплитуде соответствует вектор АВ, показанный на векторной диаграмме ?

    2
    Свет от источника S дифрагирует на круглом отверстии. Выберите на фазовой диаграмме вектора, соответствующие амплитудам в точке Р, если: 1) отверстие открывает почти 5 первых зон; 2) вместо экрана с отверстием - диск того же диаметра; 3) экрана нет вообще.

    Вектора на диаграмме не соответствуют условию
    На экране Р наблюдается дифракция Френеля на круглом отверстии D от точечного монохроматического источника S. Введите число открытых френелевских зон по заданному распределению интенсивности в плоскости экрана вдоль оси х.

    3
    Между точечным источником S и точкой наблюдения на экране находится экран с отверстием, радиус которого можно изменять. При некотором значении R амплитуда в точке Р соответствует вектору АВ1. Что произошло с радиусом отверстия, если вектор амплитуды переместился в положение АВ2?

    Увеличился в 1,29 раза.
    Плоский волновой фронт интенсивности J0 падает на экран с отверстием, закрытым стеклянной пластиной. Для точки Р на экране пластиной открыты 1,5 зоны Френеля. В пластине сделаны две круглые выемки: первая - внутренняя, глубиной h1 и радиусом R1/корень из2, вторая в виде кольца глубиной h2 и шириной (R1-R1/корень из2). Величины h соответствуют максимальной интенсивности в точке Р на экране. Найти величину h2.

    h2=3 lambda /4(n-1)
    Узкая щель S шириной 35 мкм освещается монохроматическим излучением с плоским фронтом (lambda =620 нм). На экране (см.картинку) наблюдается дифракция Фраунгофера с характерным размером х. Определите величину х, если расстояние от щели до экрана равно 80см.

    14,2 мм
    Дифракционная решетка освещается параллельным, нормально падающим пучком света. .В зрительной трубе, под углом 30° к оси решетки видны совпадающие линии (lambda1=675нм и lambda2=450нм). Наибольший порядок, который дает эта решетка - 4-ый. Определить период решетки(в мкм).

    2,7
    Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Введите номер правильного варианта наблюдаемой картины, если известно что оказались открытыми шесть френелевских зон.

    4
    Амплитуде дифрагированной волны в точке наблюдения соответствует вектор АВ, показанный на фазовой диаграмме. Как будет изменяться интенсивность в точке Р по мере увеличения диаметра отверстия до размера, которому будет соответствовать вектор амплитуды АС ?

    Будет сначала возрастать, а затем убывать.
    Свет от источника S дифрагирует на круглом отверстии. Выберите на фазовой диаграмме вектора, соответствующие амплитудам в точке Р, если: 1) отверстие открывает почти 3 первых зон; 2) вместо экрана с отверстием - диск того же диаметра; 3) экрана нет вообще.

    1. АВ, 2. ВС, 3. АС
    Свет от точечного монохроматического источника S дифрагирует на круглом отверстии. Параметры системы таковы, что для точки Р открыто 1,5 зоны Френеля. На векторной диаграмме сложения вторичных волн найдите вектор, соответствующий амплитуде в точке Р.

    AC
    На рисунке представлены распределения дифрагированного на щели плоского монохроматического излучения в трех плоскостях Р1,Р2 и Р3.Оцените (в сантиметрах) дистанцию Рэлея R, условно отделяющую области дифракции в ближней и дальней зоне. Ширина щели 150 мкм, lambda = 0,45 мкм.

    5,0
    Плоский волновой фронт интенсивности J0 падает на экран с отверстием, закрытым стеклянной пластиной. Для точки Р на экране пластиной открыты 2 зоны Френеля. В пластине сделана круглая выемка глубиной h и радиусом r (r- радиус первой зоны Френеля). Величина h минимальна, и соответствует максимальной интенсивности в точке Р на экране. Найти величину h.

    h= lambda /2(n-1)
    I(x) - распределение интенсивности дифрагированного на узкой щели излучения, где x - координата в плоскости экрана, перпендикулярная длинной стороне щели. Найдите ширину щели(в мкм), если lambda =0.51 мкм, а=8.3 мм, а расстояние от щели до экрана - 765 мм.

    47
    question_text=Ширина решетки равна 15мм, постоянная d=5мкм. В спектре какого наименьшего порядка получается раздельное изображение двух спектральных линий с разностью длин волн 1А, если линии лежат в красной части спектра вблизи =740нм?

    3
    Экран с отверстием освещается точечным монохроматическим источником. На втором экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите возможные варианты наблюдаемой картины, если известно что оказалось открытым четное число френелевских зон.

    2 и 4
    Свет от точечного монохроматического источника S дифрагирует на круглом отверстии D. Параметры системы и длина волны таковы, что амплитуде в точке Р соответствует на векторной диаграмме сложения вторичных волн вектор АВ. Введите число френелевских зон, открытых для точки Р.

    0,5
    Монохроматическая волна падает на круглое отверстие изменяемого диаметра d и создает на экране Р картину дифракции Френеля. Пользуясь предложенной фазовой диаграммой определите, какой номер соответствует самому большому отверстию (А), а какой - самой большой интенсивности в центре (В) ?

    А - 1; В - 3
    Точечный монохроматический источник S освещает непрозрачный диск D. На экране P в центре геометрической тени наблюдается светлое пятно (т.н. пятно Пуассона). Определите, что будет происходить с картиной на экране при постепенном увеличении диаметра диска.
    Пятно будет бледнеть, оставаясь светлее тени.
    Плоская волна падает на экран с прямоугольной щелью ширины d. При этом в точке Р наблюдается самый глубокий минимум. Затем щель расширяют еще на 0,7 мм и наблюдают следующий минимум. Найдите число открытых зон k1и k2, если b=60 см.

    k1 = 2; k2= 4
    Плоский волновой фронт интенсивности J0 падает на экран с отверстием, закрытым стеклянной пластиной. Для точки Р на экране пластиной открыты 2 зоны Френеля. В пластине сделана круглая выемка глубиной h и радиусом r (r- радиус первой зоны Френеля). Величина h минимальна, и соответствует максимальной интенсивности в точке Р на экране. Найти интенсивность в точке Р .

    16 J0
    Определить разрешающую способность решетки и разрешит ли решетка, имеющая постоянную 20мкм, натриевый дублет (lambda1=5890А и (lambda2=5896А) в спектре первого порядка, если длина нарезанной части решетки 2 см?

    R = 1000 , разрешит
    На фотопластинке наблюдается дифракция монохроматического излучения (lambda=390 нм) в дальней зоне от круглого отверстия. Какая часть энергии прошедшего через отверстие излучения сосредоточена в пределах центрального пятна (кружка Эйри).

    около 84%
    Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите правильный вариант, если известно что оказались открытыми cемь френелевских зон.

    3
    В точке Р наблюдается дифракция излучения от точечного источника S на круглом отверстии D. Открыто 14 первых зон Френеля. Что произойдет с интенсивностью волны в точке Р, если семь внешних зон закрыть непрозрачным экраном ?

    Увеличится многократно
    Свет от точечного монохроматического источника S дифрагирует на круглом отверстии. Параметры системы таковы, что для точки наблюдения открыто 2 зоны Френеля. На векторной диаграмме сложения вторичных волн найдите вектор, соответствующий амплитуде в точке наблюдения.

    Правильного ответа нет
    Расстояние от центра амплитудной зонной пластинки до ее главного фокуса равно F. Выберите правильное выражение для n-ого кратного фокуса (n=0,1,2...)

    F / (2n+1)
    Плоская волна падает на экран с прямоугольной щелью ширины d1.При этом в точке Р наблюдается максимально воэможная интенсивность. Затем щель расширяют еще на 0,2 мм и наблюдают следующий максимум. Найдите число открытых зон k1и k2.

    k1= 1; k2= 3
    Плоская световая волна интенсивностью J0 (длина волны lambda) падает нормально на стеклянную пластину (показатель преломления n) с круглой выемкой глубины h и радиуса R. Для точки Р радиус R соответствует первой зоне Френеля, а величина h - максимальной интенсивности. Найдите hmin.

    lambda / 2 (n-1)
    Узкая щель S шириной 1 мм освещается монохроматическим излучением с плоским фронтом (lambda=0.58 мкм). На экране наблюдается дифракция Фраунгофера с характерным размером а. Определите величину а (в мм), если расстояние SO=30см.

    Условия не соответствуют дифракции Фраунгофера
    При освещении белым светом дифракционной решетки спектры третьего и четвертого порядков отчасти перекрывают друг друга. На какую длину волны (в нм) в спектре третьего порядка накладывается фиолетовая граница спектра четвертого порядка (lambda= 410 нм).

    547
    Плоская монохроматическая волна с интенсивностью J0 падает по нормали на круглое отверстие диаметром d. Определите, во сколько раз интенсивность волны в точке наблюдения больше, чем J0, если ее амплитуде соответствует вектор АВ, показанный на векторной диаграмме ?

    2.0
    На рисунке представлены распределения дифрагированного на щели плоского монохроматического излучения в трех плоскостях Р1,Р2 и Р3.Каков смысл указанной на рисунке дистанции Рэлея R ?

    Соответствует одной открытой зоне.
    На экране Р наблюдается дифракция Френеля на круглом отверстии D от точечного монохроматического источника S. Введите число открытых френелевских зон по заданному распределению интенсивности в плоскости экрана вдоль оси х.

    4
    Точечный монохроматический источник S освещает непрозрачный диск D. На экране P в центре геометрической тени наблюдается светлое пятно (т.н. пятно Пуассона). Выберите все верные утверждения, касающиеся этого пятна.

    *Пятно появляется, если диском перекрыто любое число зон Френеля.

    При увеличении D пятно становится уже и бледнее.

    При уменьшении L пятно становится уже и бледнее.*
    Плоская монохроматическая волна падает нормально на экран с круглым отверстием D. Диаметр отверстия уменьшается в N раз. Найдите новое расстояние b, при котором в точке Р будет наблюдаться та же дифракционная картина, но уменьшенная в N раз.

    b/(N*N)
    Плоская световая волна интенсивностью J0 (длина волны lambda) падает нормально на стеклянную пластину (показатель преломления n) с круглой выемкой глубины h и радиуса R. Для точки Р радиус R соответствует первой зоне Френеля, а величина h - максимальной интенсивности. Найдите интенсивность в точке Р.

    9 J0
    Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Фраунгофера от прямоугольного отверстия. Выберите правильный вариант распределения интенсивности в плоскости экрана.

    2
    Как изменится дифракционная картина главных максимумов, если у решетки с периодом 6 мкм увеличить ширину щелей до 3 мкм ? Исходную ширину щелей считать бесконечно малой.

    Исчезнут спектры 2, 4, 6, 8 и т.д. порядков
    Амплитуде дифрагированной волны в точке наблюдения соответствует вектор АВ, показанный на фазовой диаграмме. Как изменится интенсивность в точке наблюдения, если диаметр отверстия увеличивают, добиваясь для той же точки амплитуды АС ?

    Вообще не изменится.
    Экран с отверстием освещается точечным монохроматическим источником. На втором экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите возможные варианты наблюдаемой картины, если известно что оказалось открытым нечетное число френелевских зон.

    1 и 3
    На экране Р наблюдается дифракция Френеля на круглом отверстии D от точечного монохроматического источника S. Введите число открытых френелевских зон по заданному распределению интенсивности в плоскости экрана вдоль оси х.

    3
    Точечный источник света S (длина волны 0.5мкм) расположен на расстоянии а = 100 см перед экраном с круглым отверстием диаметра 2.0 мм. Найти расстояние b (в метрах) до точки наблюдения на экране, для которой амплитуда волны изображается вектором АВ на векторной диаграмме.

    2
    Плоская монохроматическая волна падает на непрозрачный экран с круглым отверстием. Точка наблюдения Р удаляется вдоль оси x от плоскости экрана в области дифракции Френеля. Выберите верные утверждения, касающиеся картины дифракции в точке Р.

    *Число периферийных дифракционных колец уменьшается.

    Число открытых зон Френеля уменьшается.

    В центре картины наблюдаются то минимумы, то максимумы.*
    Плоский волновой фронт падает на экран с отверстием радиусом R, закрытым стеклянной пластиной (показатель преломления n). Величина R соответствует для точки Р первой зоне Френеля. Найдите минимальную глубину выемки радиуса R /корень квадратный из 2-х, увеличивающую интенсивность в точке Р вдвое.

    h = lambda /12 (n -1)
    Узкая щель освещается удаленным точечным монохроматическим источником S. Выберите правильный вариант наблюдаемой на экране Р картины дифракции Фраунгофера.

    4
    На плоскую отражательную дифракционную решетку падает белый свет. Определите правильную окраску экрана Р в точках А, В и С, если известно что в этих точках наблюдаются максимумы первого порядка .

    А - желтый, В - зеленый, С - фиолетовый
    Амплитуде дифрагированной волны в точке наблюдения соответствует вектор АВ, показанный на фазовой диаграмме. Как будет изменяться интенсивность в точке наблюдения по мере увеличения диаметра отверстия до размера, которому будет соответствовать вектор амплитуды АС ?

    Будет сначала возрастать, а затем убывать.
    Расстояние от центра амплитудной зонной пластинки до ее главного фокуса равно F. Выберите правильное выражение для n-ого кратного фокуса (n = 0,1,2).

    F / (n+1)

    F / (2n+1)
    Наблюдается дифракция плоской монохроматической волны на полубесконечном непроницаемом экране. Введите номер правильного варианта распределения интенсивности света вдоль оси x

    3
    В точке Р наблюдается дифракция излучения от точечного источника S на круглом отверстии D. Открыто 14 первых френелевских зон. Что произойдет с интенсивностью волны в точке Р, если восемь внешних зон закрыть непрозрачным экраном ?

    Правильного ответа нет
    Плоская монохроматическая волна (lambda =450 нм) с интенсивностью J0 падает по нормали на круглое отверстие с R=1.2 мм. Найти интенсивность в точке наблюдения при b=3.2 м. Амплитуде в ( )Р соответствует один из векторов, показанных на векторной диаграмме.
    4J0
    Плоский волновой фронт интенсивности J0 падает на экран с отверстием радиуса R, закрытым стеклянной пластиной с выемкой радиуса r=R/корень из2. Величина R соответствует первой зоне Френеля, а h - максимуму интенсивности в точке Р. Найдите интенсивность в точке Р и величину hmin.

    8 J0; h =3 lambda /4 (n -1)
    Что произойдет с дифракционной картиной в схеме опыта по дифракции Фраунгофера на щели, если: а)перемещать щель относительно линзы; б)перемещать линзу относительно щели? (Перемещения производятся поперек оптической оси).

    а)Картина останется прежней; б)Сместится вместе с линзой
    Как изменится дифракционная картина главных максимумов, если у решетки с периодом 6 мкм увеличить ширину щелей до 2 мкм? Исходную ширину щелей считать бесконечно малой.

    Исчезнут спектры 3, 6 ,9 и т.д. порядков
    Монохроматическая волна интенсивностью J0 падает на круглое отверстие диаметра d, открывающего для точки наблюдения Р половину центральной зоны Френеля. Определите, во сколько раз интенсивность в точке Р больше, чем J0? (амплитуде в точке Р соответствует один из векторов, показанных на фазовой диаграмме).

    2 J0
    На экране Р наблюдается дифракция Френеля на круглом отверстии D диаметром 2 мм от точечного монохроматического источника S. Определить расстояние (в метрах) DP, если SD = 1 м, а длина волны 0.5 мкм. Распределение интенсивности на экране вдоль координаты х указано на рисунке.

    2.0
    Точечный монохроматический источник S освещает непрозрачный диск D. На экране P в центре геометрической тени наблюдается светлое пятно (т.н. пятно Пуассона). Определите, что будет происходить с картиной на экране при постепенном увеличении диаметра диска.
    Пятно будет бледнеть, оставаясь светлее тени.
    Плоская монохроматическая волна падает на непрозрачный экран с круглым отверстием. Точка наблюдения Р перемещается вдоль оси x от плоскости экрана в области дифракции Френеля. Определите правильный вариант изменения интенсивности в точке Р в зависимости от координаты x.

    4
    Плоская волна падает на экран с прямоугольной щелью ширины d. При этом в точке Р наблюдается самый глубокий минимум. Затем щель расширяют еще на 0,7 мм и наблюдают следующий минимум. Найдите число открытых зон k1и k2, если b=60 см.

    k1 = 2; k2= 4
    Плоский волновой фронт интенсивности J0 падает на экран с отверстием, закрытым стеклянной пластиной. Для точки Р на экране пластиной открыты 2 зоны Френеля. В пластине сделана круглая выемка глубиной h и радиусом r (r- радиус первой зоны Френеля). Величина h минимальна, и соответствует максимальной интенсивности в точке Р на экране. Найти интенсивность в точке Р и высоту ступеньки h.

    16J0; h= lambda/2(n-1)
    На рисунке представлен график распределения интенсивности света в случае дифракции Фраунгофера на щели, где а - характерный размер на экране. Как изменится вид графика, если ширину щели уменьшить в два раза?

    I(x) станет меньше в 4 раза, 1-ые минимумы будут в ( ) (2а) и (-2а)
      1   2
    написать администратору сайта