Главная страница
Финансы
Экономика
Биология
Ветеринария
Сельское хозяйство
Медицина
Математика
Начальные классы
Информатика
Вычислительная техника
История
Право
Юриспруденция
Философия
Логика
Этика
Религия
Политология
Социология
Физика
Промышленность
Энергетика
Языки
Языкознание
Культура
Искусство
Автоматика
Связь
Электротехника
Химия
Другое
Воспитательная работа
Дошкольное образование
Экология
Русский язык и литература
Строительство
Классному руководителю
Геология
Физкультура
Доп
образование
Иностранные языки
География
Логопедия
Технология
Школьному психологу
ИЗО, МХК
ОБЖ
Казахский язык и лит
Обществознание
Механика
Музыка
Директору, завучу
Социальному педагогу
Психология

шпора эмм. 1. Экономикоматематическая модель (эмм). Понятие, пример, общая классификация эмм


Название1. Экономикоматематическая модель (эмм). Понятие, пример, общая классификация эмм
Анкоршпора эмм.doc
Дата15.06.2017
Размер225 Kb.
Формат файлаdoc
Имя файлашпора эмм.doc
ТипДокументы
#9790
страница1 из 4
  1   2   3   4

1.Экономико-математическая модель (ЭММ). Понятие, пример, общая классификация ЭММ.

В основе всех совр.фин.расчетов лежат те или иные мат.модели исследуемых эк.процессов, т.е. основным методом является метод моделирования. Этот метод основан на принципе аналогии, т.е. возможности изучения не самого исходного объекта, а некоторого искусственного созданного объекта – модели. Модель вообще это некоторый объект способный заменить исследуемый с целью получения нового знания. Модели подразделяются на физические и абстрактные. Физические это макеты, конструкции и т.д. Абстрактные это словесно-описательные и мат.модели. Словесно-описательные это эк.сценарии, программы, пояснительные записки. ЭММ это мат.образ, мат.описание принципиальных сторон исследуемого эк.процесса, проблемы, задачи. ЭММ средствами экономики и мат-ки отражает существо исследуемой эк.проблемы. ЭММетоды это методы разработки, исследования и принятия решений по ЭММ. ЭММ подразделяют на макро- и микроэкономические, прескриптивные и дескриптивные. К макро относят модели, реализующие народно-хозяйственные пропорции, межотраслевые и межрегиональные пропорции и эк.взаимоотношения. К микро - модели на уровне взаимоотношений хозяйствующего субъекта, модели внутри фирменного планирования. Прескриптивные (нормативные) это модели отвечают на вопрос: Какой вариант управленческого поведения лучше? (оптимизационные модели). Дескриптивные это модели отвечают на вопрос: А что будет, если? (балансовые модели, производственные функции). Многим задачам в экономике отвечают оптимизационные (экстремальные) ЭММ.
2.Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере).

В процессе решения эк.задач с применением мат.методов можно выделить 4 осн.этапа: 1.Постановка эк.задачи, проблемы. Здесь осуществляется описание экономико-организационной задачи. 2.Мат.моделирование. Здесь разрабатывается ЭММ задачи. 3.Получение решения по модели. Здесь осуществляется реализация ЭММ. 4.Внедрение полученного решения. Разработка рекомендаций, предложений в доступном и наглядном виде для работника. В процессе исследований и принятия решений с помощью ЭММ приходится возвращаться заново на те или иные этапы.
3.Принцип оптимальности в планировании и управлении, его математическая запись.

Суть принципа оптимальности состоит в стремлении выбрать такое управленческое решение, которое наилучшим образом учитывало бы внутренние возможности и внешние условия производственной деятельности хозяйствующего субъекта. Слова «наилучшим образом» в принципе оптимальности на практике означают – выбор некоторого экономического показателя, позволяющего сравнивать, оценивать эффективность управленческих решений Х, т.е. выбрать критерий оптимальности. Критерии оптимальности: минимум себестоимости продукции, максимум прибыли от реализации, максимум рентабельности и др. Слова «учитывало бы внутренние возможности и внешние условия» на практике означают, что на выбор управленческого решения Х накладывается ряд ограничений, т.е. выбор Х осуществляется из некоторой области допустимых решений D. Реализовать на практике принцип оптимальности это значит разработать и получить решение по модели: максимизировать или минимизировать

функцию f(x) при ограничениях, где f(x1,x2,…,xn) – математическая запись критерия оптимальности –ЦФ оптимизационной модели.

Max(min) f(x1,x2,…,xn)

g1(x1,x2,…xn) {≤ , = , ≥ } b1

g2(x1,x2,…xn) {≤ , = , ≥ } b2

gn(x1,x2,…xn) {≤ , = , ≥ } bn

xi ≥ 0, i=1,¯ n
4.Общая запись оптимизационной ЭММ (задача оптимального программирования). Основные элементы и понятия.

Реализовать на практике принцип оптимальности это значит разработать и получить решение по модели: max(min) максимизировать или минимизировать функцию f(x) при ограничениях, где f(x1,x2,…,xn) – математическая запись критерия оптимальности -ЦФ. Max(min) f(x)=f(x1,x2,…,xn),x є D.

Обычно, приведенную модель записывают в виде:

Max(min) f(x1,x2,…,xn)

g1(x1,x2,…xn) {≤ , = , ≥ } b1 (1)

g2(x1,x2,…xn) {≤ , = , ≥ } b2 (2)

gn(x1,x2,…xn) {≤ , = , ≥ } bn

xi ≥ 0, i=1,¯ n (3)
5.Общая классификация задач оптимального программирования.

1.По характеру взаимосвязи между переменными: а) линейные, т.е. все функциональные связи в системе ограничений и функции цели – это линейные функции, б) нелинейные, т.е. наличие нелинейности в хотя бы одном из упомянутых элементов.

2.По характеру изменения переменных: а) непрерывные, т.е. значения каждой из управляющих переменных могут заполнять сплошь некоторую область, б) дискретные, т.е. все или хотя бы одна переменная могут принимать некоторые целочисленные значения.

3.По учету факторов времени: а) статистические. Моделирование и принятие решений осуществляются в предположении о независимости от времени элементов модели в течении периода времени, на который принимается управленческое решение, б) динамические. Такое предположение принято не может быть.

4.По наличию информации о переменных: а) задачи в условиях полной определенности (детерминированные), задачи в условиях неполной информации (случай риска). Отдельные элементы являются вероятностными величинами, однако дополнительными статистическими исследованиями могут быть установлены их законы распределения вероятностей, в) задачи в условиях неопределенности. Можно сделать предположение о возможных исходах случайных элементов, но нет возможности сделать вывод о вероятности исходов.

5.По числу критериев оценки альтернатив: а) простые (однокритериальные), где экономически приемлемо использование одного критерия оптимальности или удается специальными процедурами свести многокритериальный поиск к однокритериальному, б) сложные (многокритериальные), т.е. выбор управленческого решения по нескольким показателям.
7.Общая задача линейного программирования, основные элементы и понятия.

Реализовать на практике принцип оптимальности это значит разработать и получить решение по модели: max(min) максимизировать или минимизировать функцию f(x) при ограничениях, где f(x1,x2,…,xn) – математическая запись критерия оптимальности -ЦФ. Max(min) f(x)=f(x1,x2,…,xn),x є D.

Обычно, приведенную модель записывают в виде:

Max(min) f(x1,x2,…,xn)

g1(x1,x2,…xn) {≤ , = , ≥ } b1 (1)

g2(x1,x2,…xn) {≤ , = , ≥ } b2 (2)

gn(x1,x2,…xn) {≤ , = , ≥ } bn

xi ≥ 0, i=1,¯ n (3)
9.Графический метод решения задачи линейного программирования.

Если в задаче линейного программирования ограничения заданы в виде неравенств с двумя переменными, то задача может быть решена графически. Графический метод решения ЗЛП состоит из этапов: 1.Стоится многоугольная область допустимых решений ЗЛП. 2.Строится вектор-градиент целевой функции. Начало в т.О(0,0), а вершина в т.(df/dx1; df/dx2)=(C1;C2). 3.Строим линию уровня c1x1+c2x2=a, a=const. Линия уровня это прямая перпендикулярная вектору-градиенту. Передвигаемся в направлении этого вектора. В случае максимизации ЦФ до тех пор, пока не покинет ОДР. Предельная точка ОДР при этом движении и является точкой max ЦФ. 4.Для нахождения координат указанной предельной точки, достаточно решить 2 уравнения прямых, получаемых из соответствующих ограничений и дающих в пересечении точку max. Значение ЦФ найденное в этой точке является max. При минимизации ЦФ линия уровня перемещается в направлении противоположном вектору-градиенту.

10. Особые случаи решения ЗЛП графически

  1. оптимальное решение задачи единственно

  2. оптимальное решение существует и не одно

fmax=f(А)=f(B)=f(AB)

  1. ф-я-цель не ограничена



  1. Если у многоугольника решений нет, то система противоречива, следовательно ЗЛП противоречива


11.Основные свойства задачи линейного программирования.

В основе математического метода получения оптимального решения лежат основные свойства ЗЛП: 1.Не существует локального экстремума отличного от глобального. Если экстремум есть, то он единственный. 2.Множество всех планов ЗЛП является выпуклой многогранной областью (многогранником решения). 3.ЦФ в ЗЛП достигает своего max (min) значения в угловой точке многогранника решения (в вершине). Если ЦФ принимает max решение более чем в одной угловой точке, то она достигает того же значения в любой точке, являющейся выпуклой линейной комбинацией этих точек. 4.Каждой угловой точке отвечает опорный план ЗЛП (не отрицательное базисное решение соответствующей КЗЛП)
12.Канонический вид ЗЛП

ЗЛП назыв заданной в каноническом виде, если система ограничений ее явл системой ур-ний с неотриц правыми частыми. Любое нер-во можно привести к ур-нию путем введения в него любой дополнительной неотрицательной переменной.

xj>=0; j=1

14.Базисные и опорные решения системы линейных уравнений, переход от одного базисного решения к другому.

В процессе решения системы уравнений на некотором этапе получилась расширенная матрица вида:

( 10…0А'1r+1…А'1n | B'1)

А'= ( 01…0A'2r+1…A'2n | B'2 )

(………………………|……)

(00….1A'rr+1…A'r n | B'r )

Система совместна и имеет бесчисленное множество решений. Общее решение системы записывают:

Х1= В'1-А'1r+1*Xr+1 ------A'1n*Xn

X2=B'2- A'2r+1*Xr+1-------A'2n*Xn

----------------------------------------------

Xr= B'r - A'rr+1*Xr+1--------A'r n*Xn

Придавая каждой из стоящих в правых частях равенств переменных Xr+1, Xr+2,……, Xn; произвольные значения, получаем частные решения системы. Неизвестные Х1, Х2,…., Хr; называют базисными или основными, они соответствуют линейно-независимым векторам А1, …, Аr. Любые r– переменных называют базисными, если определитель матрицы коэффициентов при них отличен от нуля, а остальные (n-r) переменных называют свободными или не основными. Базисным решением системы уравнений называют частное решение, в котором не основные переменные имеют нулевые значения. Каждому разбиению на основные и не основные переменные соответствует одно базисное решение, а количество способов разбиения не превышает величины Сⁿⁿn=n! /m!*(n-m)!

Если все компоненты базисного решения не отрицательны, то такое решение называют опорным. Любое частное решение получается из общего путем придания конкретных значений свободным переменным.
15.Симплекс-метод с естественным базисом, алгоритм метода.

Д
ля его применения КЗЛП должна содержать единичную подматрицу M*N. В этом случае очевиден начальный опорный план (неотрицательное базисное решение системы ограничений КЗЛП). Проверка на оптимальность опорного плана происходит с помощью признака оптимальности. Переход к другому опорному плану проводится с помощью преобразований Жордана-Гаусса. Полученный новый опорный план проверяется снова на оптимальность и т.д. Процесс заканчивается за конечное число шагов, причем на последнем шаге либо выявляется неразрешимость задачи, либо получается оптимальный опорный план и соответствующее ему оптимальное значение ЦФ. Признак оптимальности состоит из двух теорем: 1.Если для всех векторов А1,А2,…,Аnсистемы ограничений выполняется условие j = ZjCj ≥ 0, где Zj = ∑ CiAij, то полученный опорный план является оптимальным. 2.Если для некоторого вектора, не входящего в базис, выполняется условие j = ZjCj < 0, то можнополучить новый опорный план, для которого значение ЦФ будет больше исходного, при этом могут быть два случая а)Если все компоненты вектора, подлежащего вводу в базис, не положительны , то ЗЛП не имеет решения. б)Если имеется хотя бы одна положительная компонента у вектора, подлежащего вводу в базис, то можно получить новый опорный план.

На основании признака оптимальности в базис вводится вектор Ak, давший минимальную отрицательную величину симплекс-разности: k = min (ZjCj), j = 1,‾n.

Чтобы выполнялось условие не отрицательности значений опорного плана, выводится из базиса вектор Ar, который дает минимальное положительное оценочное отношение: Q = minBi / Aik = Br/Ark, Aik >0, i = 1,m. Строка Arназывается направляющей, столбец Akи элемент Arkнаправляющими.

Элементы направляющей строки в новой симплекс-таблице вычисляются по формулам: arj = arj / ark, j = 1,n.

Элементы i-той строки: aij = (aijarkarjaik) / ark, i = 1,m, j = 1,n, ir.

Значения нового опорного плана: br = br / arkдляi=r; bi = (biarkbraik) / ark для ir.

Процесс решения продолжают либо до получения нового оптимального плана либо до установления неограниченности ЦФ. Если среди оценок оптимального плана нулевые только оценки, соответствующие базисным векторам, то это говорит об единственности оптимального плана. Если же нулевая оценка соответствует вектору, не входящему в базис, то это значит, что оптимальный план не единственный
16.Особые случаи решения ЗЛП симплексным методом.

1ый особый случай решения ЗЛП: решение не единственное (линия уровня параллельна одной из линий на границе области допустимых решений). Это означает, что задача имеет бесконечное множество оптимальных решений. Его задают координаты точек отрезка с угловыми точками.

2ой особый случай решения ЗЛП – задача не имеет решения, т.к. область решений не ограничена сверху.

3ий особый случай решения ЗЛП – задача не имеет решения, т.к множество планов пусто, нет ни одной общей точки.

17.Экономическая интерпретация ЗЛП, пример постановки задачи и ЭММ.

Постановка: на некоторый временной период, например месяц, осуществляется формирование производственной программы выпуска двух изделий Р1 и Р2. Для их производства используется два основных вида ресурсов S1 и S2. Экономические оценки ожидаемых месячных объемов этих ресурсов составляют В1 и В2. На предприятии имеются утвержденные нормы расходов производственных ресурсов Аij, i =1,2; j= 1,2. Имеется возможность сбыта любых объемов производственной продукции по приемлемым продажным ценам С1 и С2. Необходимо выбрать такой вариант месячной производственной программы, который позволяет максимизировать выручку от продаж. Численное значение величин приведем в таблице:

ЭММ задачи: введем обозначения: обозначим через Х1 – объем продукции первого вида Р1, через Х2 – второго вида Р2. С учетом этих обозначений , математически задача записывается:

Max f (x) = f(x1, x2)=C1x1+C2x2

max f(X1,X2)= 2X1+3X2

A1,1X1 + A1,2X2≤B1

или

1X1+3X2≤300

A2,1X1+A2,2X2≤B2 1X1+1X2≤150

X1,2≥0 X1,2≥0

Эта модель 1а, 2а, 3а, 4а, 5а, т.е. задача линейного программирования. Реализация этой модели может быть осуществлена симплекс-методом.

1) Х* = 75, Х2*=75, т.е. следует производить 75 единиц продукции первого вида и 75 единиц – второго вида. Ожидаемая выручка составит f(X*)=f(X1*,X2*)=2*75+3*75=375 у. Е.
18.Правило построения двойственной задачи, математическая запись.

1. Если исходная задача сформулирована на max, то двойственная д.б. сформулирована на минимум, и наоборот.

2. Матрица А, составленная из коэффициентов неизвестных в системе ограничений двойственной задачи является транспонированной матрице А исходной задачи.

3. Число переменных в двойственной задаче равно числу функциональных переменных исходной задачи, а число ограничений этой задачи равно числу переменных в исходной задаче.

4. Коэффициенты неизвестных в целевой функции двойственной задачи являются свободными членами в системе ограничений исходной задачи. А правыми частями в ограничениях двойственной задачи – коэффициенты при неихвестных в целевой функции исходной задачи.

5. Если в исходной задаче, сформулированной на максимум, все функциональные ограничения будут иметь знак < или =, то в двойственной задаче все неизвестные неотрицательны. Если в исходной задаче, сформулированной на максимум, присутствуют уравнения или ограничений тип > или =, то соответствующие двойственные оценки будут отрицательными.

Математическая запись:


19.Теоремы двойственности и их использование для анализа оптимальных решений.

Теорема 1 (основная теорема двойственности)

1 часть: Если одна из двойственных задач разрешима, то разрешима и другая. Причем экстремальное значение ЦФ задач равны maxf(x)=f(x*)=minΨ(y)= Ψ (y*). 2 часть: Если одна из двойственных задач неразрешима, то неразрешима и другая.

Теорема 2 (о дополняющей не жесткости): Если при подстановке компонент оптимального плана в систему ограничений исходной задачи i-тое ограничение обращается в неравенство, то i-тая компонента оптимального плана двойственной задачи равна 0. Если i-тая компонента оптимального плана двойственной задачи положительна, то i-тое ограничение исходной задачи удовлетворяется ее оптимальным решением как строгое неравенство. Xi* (∑AijYi*- Ci) = 0 Yi* (∑AijXj*- Bi) = 0
20.Двойственные оценки в ЗЛП, интервалы устойчивости двойственных оценок, определение средствами Excel.

С каждой задачей линейного программирования тесно связана другая линейная задача , называемая двойственной; первоначальная задача называется исходной или прямой.

Связь исходной и двойственной задачи заключается, в частности, в том, что решение одной из них может быть получено непосредственно из решения другой. Переменные двойственной задачи называются двойственными оценками.

Модель двойственной задачи имеет вид:

g()=





Теорема об оценках: значения переменных в оптимальном решении двойственной задачи представляют собой оценки влияния свободных членов b системы ограничений – неравенств прямой задачи на величину



Экономико- математический анализ оптимальных решений базируется на свойсвах двойственных оценок (для определения этих границ существует математические соотношения, которые реализованы в «Отчете по устойчивости» Excel. (теневые цены, интервалы устойчивости, допустимое увеличение, допустимое уменьшение)

Интервалы изменения объемов ресурсов ( компонент вектора В) в пределах которых двойственные оценки сохраняют свои значения принято называть интервалами устойчивости двойственных оценок.

Если двойственные оценки попадают в интервал устойчивости, то экономическое поведение не меняется Если выходят за пределы интервалов устойчивости ,то новое экономическое поведение получим в новом решении задачи.

1. те ограничения которые выполнялись как равенства , так и будут выполняться как равенства

2.структура плана останется неизменной

Совмещая 1 и 2 формируем новое поведение объемов ресурсов.

Двойственные оценки связаны с

оптимальным планом простой задачи .Всякое изменение исходных данных прямой задачи может оказать влияние как на ее оптимальный план () так и на систему оптимальных двойственных оценок. Поэтому чтобы проводить экономический анализ с использованием двойственных оценок,нужно знать их интервал устойчивости
21.Свойства двойственных оценок и их использование для анализа оптимальных решений.

1.Величина двойственной оценки того или иного ресурса показывает насколько возросло бы максимальное значение ЦФ, если бы объем данного ресурса увеличился на одну единицу. (двойственные оценки измеряют эффективность малых приращений объемов ресурсов в конкретных условиях данной задачи). Это свойство позволяет выявить основные направления расшивки узких мест в производственной деятельности. 2.Двойственные оценки отражают сравнительную дефицитность различных видов ресурсов в отношении принятого в задаче показателя эффективности. Оценки показывают, какие ресурсы являются более дефицитными (они будут иметь самые высокие оценки), какие менее дефицитны и какие совсем не дефицитны. 3.Двойственные оценки позволяют определять нормы заменяемости ресурсов (предполагается неабсолютная заменяемость, а относительная, т.е. заменяемость с точки зрения критерия оптимальности). 4.Двойственные оценки служат инструментом определения эффективности отдельных хозяйственных решений. С их помощью можно определять выгодность производства новых изделий, эффективность новых технологических способов. ЕСЛИ ∆j = ∑ AijYi*- Cj ≤ 0 то выгодно, ЕСЛИ j > 0 то невыгодно.
22.Постановка и экономико-математическая модель закрытой транспортной задачи.

Имеется mпунктов производства однородного продукта с объемами производства A1,A2,…,Am. Имеется nпунктов потребления этого продукта с объемами потребления b1,b2,…,bn. Известны оценки С= (Cij) M*Nтранспортных затрат на перевозку единицы груза от i-того поставщика к j-тому потребителю (по коммуникации от iк j). Надо так прикрепить потребителей к поставщикам, чтобы минимизировать суммарные транспортные затраты на перевозку груза. ЭММ ТЗ: Обозначим через Xij, i=1,mj=1,nобъемы перевозок по коммуникации ij, т.е. в рассмотрение вводится матрица X=(Xij)m*n.

  1   2   3   4
написать администратору сайта