Главная страница
Навигация по странице:

  • Основные принципы построения ОС.

  • ОС для автономного компьютера.

  • Функциональные компоненты ОС. Управление процессами.

  • Функциональные компоненты ОС. Управление памятью.

  • Функциональные компоненты ОС. Управление файлами и внешними устройствами

  • Шпаргалки - Вопросы для экзамена по операционным системам. 1. Функции ос ос


    Скачать 345 Kb.
    Название1. Функции ос ос
    Дата28.06.2020
    Размер345 Kb.
    Формат файлаdoc
    Имя файлаШпаргалки - Вопросы для экзамена по операционным системам.doc
    ТипДокументы
    #61740
    страница1 из 5

    С этим файлом связано 1 файл(ов). Среди них: Operetsionniye_sistemi_ofisniye_prilojeniya.docx.
    Показать все связанные файлы
    Подборка по базе: Шаки Алина Экономические функции государства.docx, Лекция № 4 Функции и виды общения.ppt, Курсовая Работа апрель 2018 г. СК РФ Понятие, цели и функции Док, Триганемические функции.docx, ТЕСТЫ ПО ТЕМЕ СУЩНОСТЬ И ФУНКЦИИ ДЕНЕГ.docx, Задачи и функции Департамента государственного протокола МИД РФ.
      1   2   3   4   5

    1. Функции ОС

    ОС – это комплекс взаимосвязанных программ, который действует как интерфейс между приложениями и пользователями с одной стороны и аппаратной частью с другой. В соответствии с этим определением ОС выполняет две группы функций: предоставление пользователю или программисту вместо реальной аппаратуры компьютера расширенной виртуальной машины, с которой удобней работать и которую легче программировать; повышение эффективности использования компьютера путем рационального управления его ресурсами в соответствии с некоторым критерием. Реальная машина, способная выполнять только небольшой набор элементарных действий, определяемых ее системой команд, превращается в виртуальную машину, выполняющую широкий набор гораздо более мощных функций. Виртуальная машина тоже управляется командами, но это уже команды другого, более высокого уровня. Таким образом, назначение ОС состоит в предоставлении пользователю/программисту некоторой расширенной виртуальной машины, которую легче программировать и с которой легче работать, чем непосредственно с аппаратурой, составляющей реальный компьютер или реальную сеть. Операционная система не только предоставляет пользователям и программистам удобный интерфейс к аппаратным средствам компьютера, но и является механизмом, распределяющим ресурсы компьютера. Управление ресурсами включает решение следующих общих, не зависящих от типа ресурса задач: планирование ресурса – то есть определение, какому процессу, когда и в каком количестве (если ресурс может выделяться частями) следует выделить данный ресурс; удовлетворение запросов на ресурсы; отслеживание состояния и учет использования ресурса – то есть поддержание оперативной информации о том, занят или свободен ресурс и какая доля ресурса уже распределена; разрешение конфликтов между процессами. Таким образом, управление ресурсами составляет важную часть функций любой операционной системы, в особенности мультипрограммной. В отличие от функций расширенной машины большинство функций управления ресурсами выполняются операционной системой автоматически и прикладному программисту недоступны.

    2. Примеры ОС

    Операционные системы, развиваясь вместе с ЭВМ, прошли длинный путь от простейших программ в машинных кодах длинной в несколько килобайт до программ, написанных на языках высокого уровня, размер которых исчисляется десятками мегабайт. Такой значительный рост размера операционных систем обусловлен, главным образом, стремлением разработчиков ’украсить’ операционную систему, расширить ее возможности, добавить возможности, изначально несвойственные операционным системам, а также сделать интерфейс пользователя интуитивным. Все эти попытки дали свои результаты, и положительные, и отрицательные. На сегодняшний день на рынке программного обеспечения для IBM PC-совместимых компьютеров сосуществуют несколько семейств операционных систем. Однозадачные однопользовательские ОС MS-DOS и PC-DOS (первая версия этой ОС, выпущенной корпорацией Microsoft в 1981, была предназначена для поставки с компьютерами IBM PC) являются самыми распространенными ввиду своей простоты и ’неприхотливости’, большую роль здесь играет и то, что подавляющее большинство программ работает именно под их управлением. MS-DOS и PC-DOS характеризуются минимальным пользовательским и программным интерфейсами, в тоже время, работая со всевозможными программными оболочками, интегрированными средами (такими как Microsoft Windows или DESQview), создают комфортабельную среду для пользователя и программы. ОС Microsoft Windows NT (32-разрядная Windows NT, первая версия, которой появилась на рынке в 1993-м, а последняя - в 1998 году, с самого начала создавалась как сверхстабильная, надежная система, рассчитанная, прежде всего на работу, а не на разные игрушки-развлечения.), ориентированная на работу в разнородных сетях, высоконадежна, однако, это достигнуто за счет частичной потери совместимости с MS-DOS. Операционная система OS/2 (нестабильность Windows не была секретом ни для кого, в том числе и для разработчиков Microsoft, поэтому параллельно с совершенствованием Windows корпорация вела активную работу по созданию более совершенной и защищенной системы - OS/2) стоит особняком: будучи полноправной многозадачной операционной системой со своим оригинальным графическим пользовательским и программным интерфейсами, она сохраняет совместимость с MS-DOS и PC-DOS (начиная с версии WARP 3.0 и с Microsoft Windows). ОС UNIX - одна из старейших и наиболее простых операционных систем, изначально была рассчитана на разработку программ (для нее самой и не только) на мини-ЭВМ и позволяла без больших затрат труда программиста переносить программу из одной системы ЭВМ на другую. Неудивительно, что сейчас продается много различных вариантов мобильной операционной системы UNIX, таких как XENIX, UNIXWARE, SUN-OS, LINUX, BSD.

    3. Эволюция ОС.

    История ОС насчитывает примерно полвека. Она во многом определялась и определяется развитием элементной базы и вычислительной аппаратуры. Первые цифровые вычислительные машины, появившиеся в начале 40-х годов, работали без операционных систем, все задачи организации вычислительного процесса решались вручную каждым программистом с пульта управления. Прообразом современных операционных систем явились мониторные системы середины 50-х, которые автоматизировали действия оператора по выполнению пакета заданий. Был создан один из первых языков программирования – Фортран (Formula Translation). Для решения экономических задач был создан язык программирования - Кобол. В 1965-1975 годах переход к интегральным микросхемам открыл путь к появлению следующего поколения компьютеров, ярким представителем которых является IBM/360. В этот период были реализованы практически все основные концепции, присущие современным ОС: мультипрограммирование, мультипроцессирование, многотерминальный режим, виртуальная память, файловые системы, разграничение доступа и сетевая работа. В конце 60-х были начаты работы по созданию глобальной сети ARPANET, явившейся отправной точкой для Интернета. К середине 70-х годов широкое распространение получили мини-компьютеры. Их экономичность и доступность послужила мощным стимулом для создания локальных сетей. С середины 70-х годов началось массовое использование UNIX, уникальной для того времени ОС, которая сравнительно легко переносилась на различные типы компьютеров. Хотя ОС UNIX была первоначально разработана для мини-компьютеров, ее гибкость, элегантность, мощные функциональные возможности и открытость позволили ей занять прочные позиции во всех классах компьютеров. В конце 70-х годов был создан рабочий вариант стека протоколов TCP/IP. В 1983 году стек протоколов TCP/IP был стандартизован. Независимость от производителей, гибкость и эффективность, доказанные успешной работой в Интернете, сделали протоколы TCP/IP не только главным транспортным механизмом Интернета, но и основным стеком большинства сетевых ОС. Начало 80-х годов связано со знаменательным для истории операционных систем событием - появлением персональных компьютеров, которые послужили мощным катализатором для бурного роста локальных сетей, создав для этого отличную материальную основу в виде десятков и сотен компьютеров, расположенных в пределах одного здания. В 80-е годы были приняты основные стандарты на коммуникационные технологии для локальных сетей: в 1980 году - Ethernet, в 1985 - Token Ring, в конце 80-х - FDDI. Это позволило обеспечить совместимость сетевых ОС на нижних уровнях, а также стандартизовать интерфейс ОС с драйверами сетевых адаптеров. К началу 90-х практически все ОС стали сетевыми, способными поддерживать работу с разнородными клиентами и серверами. Появились специализированные сетевые ОС, предназначенные исключительно для выполнения коммуникационных задач, например система IOS компании Cisco Systems, работающая в маршрутизаторах. Особое внимание в течение всего последнего десятилетия уделялось корпоративным сетевым ОС, для которых характерны высокая степень масштабируемости, поддержка сетевой работы, развитые средства обеспечения безопасности, способность работать в гетерогенной среде, наличие средств централизованного администрирования и управления.

    4. Основные принципы построения ОС.

    Простейшая структуризация ОС состоит в разделении всех компонентов ОС на модули, выполняющие основные функции ОС (ядро), и модули, выполняющие вспомогательные функции ОС. Вспомогательные модули ОС оформляются либо в виде приложений (утилиты и системные обрабатывающие программы), либо в виде библиотек процедур. Вспомогательные модули загружаются в оперативную память только на время выполнения своих функций, то есть являются транзитными. Модули ядра постоянно находятся в оперативной памяти, то есть являются резидентными. При наличии аппаратной поддержки режимов с разными уровнями полномочий устойчивость ОС может быть повышена путем выполнения функций ядра в привилегированном режиме, а вспомогательных модулей ОС и приложений - в пользовательском. Это дает возможность защитить коды и данные ОС и приложений от несанкционированного доступа. ОС может выступать в роли арбитра в спорах приложений за ресурсы. Ядро, являясь структурным элементом ОС, в свою очередь, может быть логически разложено на следующие слои (начиная с самого нижнего): машинно-зависимые компоненты ОС; базовые механизмы ядра; менеджеры ресурсов; интерфейс системных вызовов. В многослойной системе каждый слой обслуживает вышележащий слой, выполняя для него некоторый набор функций, которые образуют межслойный интерфейс. На основе функций нижележащего слоя следующий вверх по иерархии слой строит свои функции - более сложные и более мощные, которые, в свою очередь, оказываются примитивами для создания еще более мощных функций вышележащего слоя. Многослойная организация ОС существенно упрощает разработку и модернизацию системы. Микроядерная архитектура является альтернативой классическому способу построения операционной системы, в соответствии с которым все основные функции операционной системы, составляющие многослойное ядро, выполняются в привилегированном режиме. В микроядерных ОС в привилегированном режиме остается работать только очень небольшая часть ОС, называемая микроядром. Все остальные высокоуровневые функции ядра оформляются в виде приложений, работающих в пользовательском режиме. Микроядерные ОС удовлетворяют большинству требований, предъявляемых к современным ОС, обладая переносимостью, расширяемостью, надежностью и создавая хорошие предпосылки для поддержки распределенных приложений. За эти достоинства приходится платить снижением производительности, что является основным недостатком микроядерной архитектуры. Частотный принцип реализации системных программ основан на выделении в алгоритмах и в обрабатываемых массивах ОС действий и данных по частоте их использования. Следствием применения частотного принципа в современных ОС - наличие многоуровневого планирования при организации работы ОС. Принцип модульности отражает технологические и эксплуатационные свойства системы, предусматривая оформление функционально законченных компонентов ОС в виде отдельных модулей. Принцип функциональной избирательности предусматривает выделение некоторого множества важных модулей, которые должны быть постоянно в “горячем” режиме для обеспечения эффективного управления вычислительным процессом. Этот выделенный набор модулей называют ядром ОС. При формировании состава ядра ОС ищут компромисс между двумя разноречивыми требованиями: в состав ядра должны войти наиболее часто используемые модули; объем памяти, занимаемый ядром ОС, должен быть как можно меньше. Принцип генерируемости определяет такой способ исходного представления системной программы ОС, который позволяет настраивать эту системную программу исходя из конкретной конфигурации аппаратных средств и круга решаемых проблем. Принцип функциональной избыточности предусматривает обеспечение возможности выполнения одной и той же работы различными средствами. Принцип перемещаемости предусматривает такое построение модулей ОС, при котором результаты работы не зависят от места их расположения. Принцип защиты информации определяет необходимость разработки мер, ограждающих программы и данные пользователя от искажений или нежелательных влияний друг от друга, а также пользователей на ОС и обратно. Принцип независимости программ от внешних устройств заключается в том, что связь программ с конкретными внешними устройствами осуществляется не на уровне подготовки программных устройств (трансляции или компиляции исходного кода, генерации выполняемого модуля), а в период планирования операционной системой ее выполнения. Принцип открытости и наращиваемости ОС предусматривает возможность доступа к ней для анализа пользователями, специалистами, обслуживающим персоналом, а также изменения конфигурации ОС и ее мощности без осуществления процессов генерации.

    5. ОС для автономного компьютера.

    Операционная система компьютера представляет собой комплекс взаимосвязанных программ, который действует как интерфейс между приложениями и пользователями с одной стороны, и аппаратурой компьютера с другой стороны. В соответствии с этим определением ОС выполняет две группы функций: предоставление пользователю или программисту вместо реальной аппаратуры компьютера расширенной виртуальной машины, с которой удобней работать и которую легче программировать; повышение эффективности использования компьютера путем рационального управления его ресурсами в соответствии с некоторым критерием. Реальная машина, способная выполнять только небольшой набор элементарных действий, определяемых ее системой команд, превращается в виртуальную машину, выполняющую широкий набор гораздо более мощных функций. Виртуальная машина тоже управляется командами, но это уже команды другого, более высокого уровня. Таким образом, назначение ОС состоит в предоставлении пользователю некоторой расширенной виртуальной машины, которую легче программировать и с которой легче работать. Управление ресурсами составляет важную часть функций любой операционной системы, в особенности мультипрограммной. В отличие от функций расширенной машины большинство функций управления ресурсами выполняются операционной системой автоматически и прикладному программисту недоступны. Наиболее важными подсистемами управления ресурсами являются подсистемы управления процессами, памятью, файлами и внешними устройствами, а подсистемами, общими для всех ресурсов, являются подсистемы пользовательского интерфейса, защиты данных и администрирования. Подсистема управления процессами планирует выполнение процессов, занимается созданием и уничтожением процессов, обеспечивает процессы необходимыми системными ресурсами, поддерживает синхронизацию процессов, а также обеспечивает взаимодействие между процессами. Функциями ОС по управлению памятью являются отслеживание свободной и занятой памяти; выделение памяти процессам и освобождение памяти при завершении процессов; защита памяти; вытеснение процессов из оперативной памяти на диск и возвращение их в оперативную память, а также настройка адресов программы на конкретную область физической памяти. Безопасность данных вычислительной системы обеспечивается средствами отказоустойчивости ОС, направленными на защиту от сбоев и отказов аппаратуры и ошибок программного обеспечения, а также средствами защиты от несанкционированного доступа. Поддержание высокоуровневого унифицированного интерфейса прикладного программирования к разнородным устройствам ввода-вывода является одной из наиболее важных задач ОС. Операционная система должна обеспечивать удобный интерфейс не только для прикладных программ, но и для человека, работающего за терминалом. Прикладному программисту возможности ОС доступны в виде набора функций, составляющих интерфейс прикладного программирования (API).

    6. Функциональные компоненты ОС. Управление процессами.

    Функции операционной системы автономного компьютера обычно группируются либо в соответствии с типами локальных ресурсов, которыми управляет ОС, либо в соответствии со специфическими задачами, применимыми ко всем ресурсам. Иногда такие группы функций называют подсистемами. Наиболее важными подсистемами управления ресурсами являются подсистемы управления процессами, памятью, файлами и внешними устройствами, а подсистемами, общими для всех ресурсов, являются подсистемы пользовательского интерфейса, защиты данных и администрирования. Важнейшей частью операционной системы, непосредственно влияющей на функционирование вычислительной машины, является подсистема управления процессами. Для каждого вновь создаваемого процесса ОС генерирует системные информационные структуры, которые содержат данные о потребностях процесса в ресурсах вычислительной системы, а также о фактически выделенных ему ресурсах. Таким образом, процесс можно также определить как некоторую заявку на потребление системных ресурсов. В мультипрограммной операционной системе одновременно может существовать несколько процессов. Часть процессов порождается по инициативе пользователей и их приложений, такие процессы обычно называют пользовательскими. Другие процессы, называемые системными, инициализируются самой операционной системой для выполнения своих функций. Важной задачей операционной системы является защита ресурсов, выделенных данному процессу, от остальных процессов. Одним из наиболее тщательно защищаемых ресурсов процесса являются области оперативной памяти, в которой хранятся коды и данные процесса. Совокупность всех областей оперативной памяти, выделенных операционной системой процессу, называется его адресным пространством. Говорят, что каждый процесс работает в своем адресном пространстве, имея в виду защиту адресных пространств, осуществляемую ОС. Защищаются и другие типы ресурсов, такие как файлы, внешние устройства и т. д. Операционная система может не только защищать ресурсы, выделенные одному процессу, но и организовывать их совместное использование, например, разрешать доступ к некоторой области памяти нескольким процессам. На протяжении периода существования процесса его выполнение может быть многократно прервано и продолжено. Для того чтобы возобновить выполнение процесса, необходимо восстановить состояние его операционной среды. Состояние операционной среды идентифицируется состоянием регистров и программного счетчика, режимом работы процессора, указателями на открытые файлы, информацией о незавершенных операциях ввода-вывода, кодами ошибок выполняемых данным процессом системных вызовов и т. д. Эта информация называется контекстом прогресса. Говорят, что при смене процесса происходит переключение контекстов. Таким образом, подсистема управления процессами планирует выполнение процессов, то есть распределяет процессорное время между несколькими одновременно существующими в системе процессами, занимается созданием и уничтожением процессов, обеспечивает процессы необходимыми системными ресурсами, поддерживает синхронизацию процессов, а также обеспечивает взаимодействие между процессами.

    7. Функциональные компоненты ОС. Управление памятью.

    Функции операционной системы автономного компьютера обычно группируются либо в соответствии с типами локальных ресурсов, которыми управляет ОС, либо в соответствии со специфическими задачами, применимыми ко всем ресурсам. Иногда такие группы функций называют подсистемами. Наиболее важными подсистемами управления ресурсами являются подсистемы управления процессами, памятью, файлами и внешними устройствами, а подсистемами, общими для всех ресурсов, являются подсистемы пользовательского интерфейса, защиты данных и администрирования. Память является для процесса таким же важным ресурсом, как и процессор, так как процесс может выполняться процессором только в том случае, если его коды и данные (не обязательно все) находятся в оперативной памяти. Существует большое разнообразие алгоритмов распределения памяти. Они могут отличаться, например, количеством выделяемых процессу областей памяти (в одних случаях память выделяется процессу в виде одной непрерывной области, а в других - в виде нескольких несмежных областей), степенью свободы границы областей (она может быть жестко зафиксирована на все время существования процесса или же динамически перемещаться при выделении процессу дополнительных объемов памяти). В некоторых системах распределение памяти выполняется страницами фиксированного размера, а в других - сегментами переменной длины. Одним из наиболее популярных способов управления памятью в современных операционных системах является так называемая виртуальная память. Наличие в ОС механизма виртуальной памяти позволяет программисту писать программу так, как будто в его распоряжении имеется однородная оперативная память большого объема, часто существенно превышающего объем имеющейся физической памяти. В действительности все данные, используемые программой, хранятся на диске и при необходимости частями (сегментами или страницами) отображаются в физическую память. Защита памяти - это избирательная способность предохранять выполняемую задачу от записи или чтения памяти, назначенной другой задаче. Средства защиты памяти, реализованные в операционной системе, должны пресекать несанкционированный доступ процессов к чужим областям памяти. Таким образом, функциями ОС по управлению памятью являются отслеживание свободной и занятой памяти; выделение памяти процессам и освобождение памяти при завершении процессов; защита памяти; вытеснение процессов из оперативной памяти на диск, когда размеры основной памяти недостаточны для размещения в ней всех процессов, и возвращение их в оперативную память, когда в ней освобождается место, а также настройка адресов программы на конкретную область физической памяти.

    8. Функциональные компоненты ОС. Управление файлами и внешними устройствами.

    Функции операционной системы автономного компьютера обычно группируются либо в соответствии с типами локальных ресурсов, которыми управляет ОС, либо в соответствии со специфическими задачами, применимыми ко всем ресурсам. Иногда такие группы функций называют подсистемами. Наиболее важными подсистемами управления ресурсами являются подсистемы управления процессами, памятью, файлами и внешними устройствами, а подсистемами, общими для всех ресурсов, являются подсистемы пользовательского интерфейса, защиты данных и администрирования. Способность ОС к «экранированию» сложностей реальной аппаратуры очень ярко проявляется в одной из основных подсистем ОС - файловой системе. Операционная система виртуализирует отдельный набор данных, хранящихся на внешнем накопителе, в виде файла - простой неструктурированной последовательности байтов, имеющей символьное имя. Для удобства работы с данными файлы группируются в каталоги, которые, в свою очередь, образуют группы - каталоги более высокого уровня. Пользователь может с помощью ОС выполнять над файлами и каталогами такие действия, как поиск по имени, удаление, вывод содержимого на внешнее устройство (например, на дисплей), изменение и сохранение содержимого. При выполнении своих функций файловая система тесно взаимодействует с подсистемой управления внешними устройствами, которая по запросам файловой системы осуществляет передачу данных между дисками и оперативной памятью. Подсистема управления внешними устройствами, называемая также подсистемой ввода-вывода, исполняет роль интерфейса ко всем устройствам, подключенным к компьютеру. Спектр этих устройств очень обширен. Программа, управляющая конкретной моделью внешнего устройства и учитывающая все его особенности, обычно называется драйвером этого устройства.
    1.   1   2   3   4   5


    написать администратору сайта